Klasifikasi Jenis Buah Durian dengan Metode K-Nearst Neighbor

  • Asminah Asminah Institut Teknologi Pagar Alam
  • Dedi Setiadi Institut Teknologi Pagar Alam
  • Tri Susanti Institut Teknologi Pagar Alam

Abstract

Durian is a very famous fruit both in Indonesia and in the world, which is a native tropical fruit, where currently the classification process is still traditional or not yet computerized, namely based on the experience of farmers, seen from the color and shape, which sometimes still contains errors. in the classification process. This research aims to facilitate the process of classifying durian fruit using the k-nearest neighbor method. This system was built using MATLAB software, and uses a waterfall model in system development which consists of the analysis stage, design stage, coding stage and testing stage. The testing method uses a confusion matrix which is divided into two parts, namely training data and testing data. The results of this research show that the durian fruit type classification system using the k-nearest neighbor method with image processing using image processing, successfully recognized 224 of the 240 training data, with 16 data that were not recognized. After testing using holdout validation with 60 data, the system achieved a success rate of 93.3%.

References

[1] M. Siahaan, C. H. Jasa, K. Anderson, M. V. Rosiana, S. Lim, and W. Yudianto, “Penerapan Artificial Intelligence (AI) Terhadap Seorang Penyandang Disabilitas Tunanetra,” Journal of Information System and Technology (JOINT), vol. 1, no. 2, pp. 186–193, 2020.
[2] R. Rahmawati, F. Fahmi, C. Yusnar, Y. Yunus, and S. Amra, “Penerapan Deteksi Wajah Sebagai Implementasi Artificial Intelligence (AI) pada Guru Sekolah Muhammadiyah Kota Lhokseumawe,” in Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe, 2022, vol. 6, no. 1, pp. 64–69.
[3] F. E. Jelahut, H. Y. Utang, Y. E. Jelahut, and L. Jehamat, “Menalar Skeptis Adopsi Artificial Intelegence (AI) di Indonesia:‘Sebuah Tinjauan Filsafat Ilmu Komunikasi,’” 2021.
[4] D. Yudhayanti and M. Restiani, “Uji Mutu Tepung Biji Durian Sebagai Bahan Pangan Alternatif Berdasarkan Kadar Air Dan Kadar Abu Serta Cemaran Mikroba,” MEDFARM: Jurnal Farmasi dan Kesehatan, vol. 8, no. 2, pp. 43–48, 2019.
[5] A. A. WPR, F. Rozi, and F. Sukmana, “Prediksi penjualan produk unilever menggunakan metode k-nearest neighbor,” JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), vol. 6, no. 1, pp. 155–160, 2021.
[6] S. Ramadona, M. Diono, M. Susantok, and S. Ahdan, “Indoor location tracking pegawai berbasis Android menggunakan algoritma k-nearest neighbor: Indoor location tracking of employees based on Android using the k-nearest neighbor algorithm,” JITEL (Jurnal Ilmiah Telekomunikasi, Elektronika, Dan Listrik Tenaga), vol. 1, no. 1, pp. 51–58, 2021.
[7] A. H. Hasibuan, T. Zebua, and R. K. Hondro, “Penerapan Metode Sobel Edge Detection dan Image Processing Untuk Mengetahui Diameter Apel Fuji Menggunakan Aplikasi Matlab,” JURIKOM (Jurnal Riset Komputer), vol. 7, no. 3, pp. 450–454, 2020.
[8] F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” Journal of Informatics and Computer Science (JINACS), vol. 1, no. 02, pp. 104–108, 2019.
[9] T. Y. Prahudaya and A. Harjoko, “Metode Klasifikasi Mutu Jambu Biji Menggunakan Knn Berdasarkan Fitur Warna Dan Tekstur,” Jurnal Teknosains, vol. 6, no. 2, pp. 113–123, 2017.
[10] C. Paramita, E. H. Rachmawanto, and C. A. Sari, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 4, no. 1, pp. 1–6, 2019.
[11] A. A. Wahid, “Analisis metode waterfall untuk pengembangan sistem informasi,” J. Ilmu-ilmu Inform. dan Manaj. STMIK, no. November, pp. 1–5, 2020.
[12] D. Maulana and I. Suryani, “Perancangan Sistem Informasi Pendaftaran Peserta Didik Baru Berbasis Web pada SMK Kosgoro Kota Bogor,” Indonesian Journal on Software Engineering (IJSE), vol. 5, no. 1, pp. 9–18, 2019.
[13] G. J. N. Putri, “METODE BACKGROUND SUBSTRACTION UNTUK MONITORING OBYEK BERGERAK MELALUI KAMERA WEBCAM,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 3, no. 1, pp. 110–116, 2019.
[14] H. Hardiyanto, A. Abdussomad, E. Haryadi, R. Sopandi, and A. Asep, “Penerapan Model Waterfall Dan Uml Dalam Rancang Bangun Program Pembelian Barangberorientasi Objek Pada PT. FUJITA INDONESIA,” Jurnal Interkom: Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, vol. 13, no. 4, pp. 4–11, 2019.
[15] D. Rahayu and S. F. Rezky, “Perancangan Aplikasi Lowongan Kerja Berbasis Web dengan Menggunakan Metode Waterfall,” SIKOM: Jurnal Sistem Informasi Komputer, vol. 1, no. 1, pp. 25–36, 2023.
[16] W. E. Jayanti and A. Hendini, “Pengembangan perangkat lunak pengujian kendaraan bermotor (Tanjidor) dengan model waterfall pada dinas perhubungan,” Jurnal Khatulistiwa Informatika, vol. 9, no. 1, 2021.
[17] N. W. Rahadi and C. Vikasari, “Pengujian Software Aplikasi Perawatan Barang Miliki Negara Menggunakan Metode Black Box Testing Equivalence Partitions,” Jurnal Infotekmesin, vol. 11, no. 01, pp. 57–61, 2020.
[18] J. Jamaludin, C. Rozikin, and A. S. Y. Irawan, “Klasifikasi Jenis Buah Mangga dengan Metode Backpropagation,” Techné: Jurnal Ilmiah Elektroteknika, vol. 20, no. 1, pp. 1–12, 2021.
[19] A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Riset Komputer), vol. 8, no. 6, pp. 219–225, 2021.
[20] H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Network Engineering Research Operation, vol. 6, no. 2, pp. 133–144, 2021.
Published
2023-12-24
How to Cite
ASMINAH, Asminah; SETIADI, Dedi; SUSANTI, Tri. Klasifikasi Jenis Buah Durian dengan Metode K-Nearst Neighbor. BINA INSANI ICT JOURNAL, [S.l.], v. 10, n. 2, p. 176-187, dec. 2023. ISSN 2527-9777. Available at: <https://ejournal-binainsani.ac.id/index.php/BIICT/article/view/2656>. Date accessed: 16 june 2024. doi: https://doi.org/10.51211/biict.v10i2.2656.