Optimasi Manajemen Stok Barang Berbasis Prediksi pada Perusahaan Konfeksi dengan Algoritma Single Moving Average
Abstract
Manajemen stok yang optimal merupakan salah satu faktor kunci dalam meningkatkan efisiensi operasional perusahaan konfeksi. Ketidakseimbangan antara permintaan bahan baku dan ketersediaan stok dapat menyebabkan risiko kekurangan atau kelebihan stok, yang berdampak pada biaya penyimpanan dan kelancaran produksi. Penelitian ini bertujuan untuk mengembangkan algoritma prediksi berbasis Single Moving Average (SMA) guna mengoptimalkan pengelolaan stok bahan baku pada perusahaan konfeksi. Data historis permintaan bahan baku dikumpulkan, lalu algoritma SMA diterapkan untuk meramalkan kebutuhan stok pada periode mendatang. Penelitian ini melibatkan studi kasus pada sebuah perusahaan konfeksi dengan data permintaan bahan baku selama beberapa periode. Hasil penelitian menunjukkan bahwa algoritma SMA mampu memberikan prediksi yang akurat untuk kebutuhan stok, serta membantu perusahaan dalam efisiensi penyimpanan dan meminimalkan risiko kekurangan stok. Selain itu, penelitian ini memberikan rekomendasi untuk peningkatan kinerja prediksi pada masa yang akan datang.References
[1] D. M. Situmorang and I. S. Dewi, “Evaluasi Penerapan Metode Persediaan Pada Perusahaan Distributor (Studi Kasus Pada CV. SINAR SAHABAT SEJATI),” JUWIRA, vol. 3, no. 2, pp. 8–13, Nov. 2023, doi: 10.61696/juwira.v3i2.149.
[2] Nuroji, “Penerapan Metode Agile Dalam Permodelan Sistem Informasi Inventory Barang,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 4, 2023, doi: https://doi.org/10.58602/jaiti.v1i4.82.
[3] W. Lu and L. Yan, “Dynamic Pricing and Inventory Strategies for Fashion Products Using Stochastic Fashion Level Function,” Axioms, vol. 13, no. 7, p. 453, Jul. 2024, doi: 10.3390/axioms13070453.
[4] B. Safitri, S. D. Gustina, R. Abdillah, E. W. Fridayanthie, and R. Permana, “Analisis Sistem Informasi Inventory Menggunakan Metode Single Moving Averange Pada PT. Inkolanggeng Makmur Jakarta,” j-insan, vol. 3, no. 1, pp. 38–45, Jul. 2023, doi: 10.31294/jinsan.v3i1.2191.
[5] M. Tamba, “Sistem Pendukung Keputusan Prediksi Stok Barang Menggunakan Metode Moving Average Berbasis Client Server Pada PT Union,” JTM, vol. 8, no. 1, pp. 1–18, Apr. 2020, doi: 10.51351/jtm.8.1.2019598.
[6] A. S, “Sales Predictor Using Simple Linear Regression and Simple Moving Average Model,” IJRASET, vol. 11, no. 11, pp. 729–736, Nov. 2023, doi: 10.22214/ijraset.2023.56609.
[7] G. B. Susilo, “Forecasting Demand for Electric Batik Stoves Using Moving Average Method in CV. A B C,” JIEHIS, vol. 3, no. 2, pp. 148–155, Dec. 2022, doi: 10.14421/jiehis.3999.
[8] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean Absolute Percentage Error for regression models,” Neurocomputing, vol. 192, pp. 38–48, Jun. 2016, doi: 10.1016/j.neucom.2015.12.114.
[9] I. Permatahati and M. Muqorobin, “Computer Sales Forecasting System Application Using Web-Based Single Moving Average Method,” IJCIS, vol. 3, no. 2, pp. 56–63, Jun. 2022, doi: 10.29040/ijcis.v3i2.68.
[10] A. Pataropura, I. D. Sabatino, and R. Riki, “Inventory Management with Forecasting Method: Single Moving Average and Trend Projection,” bit-Tech, vol. 2, no. 3, pp. 110–121, Nov. 2020, doi: 10.32877/bt.v2i3.162.
[11] F. Hamidy and I. Yasin, “Implementation of Moving Average for Forecasting Inventory Data Using CodeIgniter,” DIMIS, vol. 1, no. 1, pp. 17–23, Feb. 2023, doi: 10.58602/dimis.v1i1.17.
[12] Saefudin, D. Susandi, and F. Nafis, “Sistem Peramalan Penjualan Paving Block Menggunakan Metode Single Moving Average,” JSiI, vol. 8, no. 2, pp. 75–81, Sep. 2021, doi: 10.30656/jsii.v8i2.3727.
[13] O. Chantarakasemchit, S. Nuchitprasitchai, and Y. Nilsiam, “Forex Rates Prediction on EUR/USD with Simple Moving Average Technique and Financial Factors,” in 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand: IEEE, Jun. 2020, pp. 771–774. doi: 10.1109/ECTI-CON49241.2020.9157907.
[14] W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 324, p. 012049, Mar. 2018, doi: 10.1088/1757-899X/324/1/012049.
[15] A. G. Putra, “Perancangan Sistem Informasi Optimasi Pengadaan Stok Menggunakan Single Moving Average Di Luxe_Id,” Universitas Pasundan, 2024.
[16] U. K. Acharjee, M. Arefin, K. M. Hossen, M. N. Uddin, Md. A. Uddin, and L. Islam, “Sequence-to-Sequence Learning-Based Conversion of Pseudo-Code to Source Code Using Neural Translation Approach,” IEEE Access, vol. 10, pp. 26730–26742, 2022, doi: 10.1109/ACCESS.2022.3155558.
[17] Z. E. Chan, E. Kurniawan, and M. D. Sena, “Forecasting Gamis Demand In Fashion Gallery Using Weighted Moving Average,” JURTEKSI, vol. 10, no. 2, pp. 323–330, Mar. 2024, doi: 10.33330/jurteksi.v10i2.3094.
[18] R. D. Snyder, A. B. Koehler, R. J. Hyndman, and J. K. Ord, “Exponential smoothing for inventory control: means and variances of lead-time demand,” p. 303453 Bytes, 2017, doi: 10.4225/03/5936249C6CC0D.
[19] G. K. Sharma and S. Patil, “Big Data Analysis for Revenue and Sales Prediction using Support Vector Regression with Auto-regressive Integrated Moving Average,” SMSJ, vol. 15, no. 01, pp. 1–8, Jan. 2023, doi: 10.18090/samriddhi.v15i01.01.
[20] M. M. Phyu and M. T. Khine, “Retail Demand Forecasting Using Sequence to Sequence Long Short-Term Memory Networks,” in 2023 IEEE Conference on Computer Applications (ICCA), Yangon, Myanmar: IEEE, Feb. 2023, pp. 208–213. doi: 10.1109/ICCA51723.2023.10181450.
[2] Nuroji, “Penerapan Metode Agile Dalam Permodelan Sistem Informasi Inventory Barang,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 4, 2023, doi: https://doi.org/10.58602/jaiti.v1i4.82.
[3] W. Lu and L. Yan, “Dynamic Pricing and Inventory Strategies for Fashion Products Using Stochastic Fashion Level Function,” Axioms, vol. 13, no. 7, p. 453, Jul. 2024, doi: 10.3390/axioms13070453.
[4] B. Safitri, S. D. Gustina, R. Abdillah, E. W. Fridayanthie, and R. Permana, “Analisis Sistem Informasi Inventory Menggunakan Metode Single Moving Averange Pada PT. Inkolanggeng Makmur Jakarta,” j-insan, vol. 3, no. 1, pp. 38–45, Jul. 2023, doi: 10.31294/jinsan.v3i1.2191.
[5] M. Tamba, “Sistem Pendukung Keputusan Prediksi Stok Barang Menggunakan Metode Moving Average Berbasis Client Server Pada PT Union,” JTM, vol. 8, no. 1, pp. 1–18, Apr. 2020, doi: 10.51351/jtm.8.1.2019598.
[6] A. S, “Sales Predictor Using Simple Linear Regression and Simple Moving Average Model,” IJRASET, vol. 11, no. 11, pp. 729–736, Nov. 2023, doi: 10.22214/ijraset.2023.56609.
[7] G. B. Susilo, “Forecasting Demand for Electric Batik Stoves Using Moving Average Method in CV. A B C,” JIEHIS, vol. 3, no. 2, pp. 148–155, Dec. 2022, doi: 10.14421/jiehis.3999.
[8] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean Absolute Percentage Error for regression models,” Neurocomputing, vol. 192, pp. 38–48, Jun. 2016, doi: 10.1016/j.neucom.2015.12.114.
[9] I. Permatahati and M. Muqorobin, “Computer Sales Forecasting System Application Using Web-Based Single Moving Average Method,” IJCIS, vol. 3, no. 2, pp. 56–63, Jun. 2022, doi: 10.29040/ijcis.v3i2.68.
[10] A. Pataropura, I. D. Sabatino, and R. Riki, “Inventory Management with Forecasting Method: Single Moving Average and Trend Projection,” bit-Tech, vol. 2, no. 3, pp. 110–121, Nov. 2020, doi: 10.32877/bt.v2i3.162.
[11] F. Hamidy and I. Yasin, “Implementation of Moving Average for Forecasting Inventory Data Using CodeIgniter,” DIMIS, vol. 1, no. 1, pp. 17–23, Feb. 2023, doi: 10.58602/dimis.v1i1.17.
[12] Saefudin, D. Susandi, and F. Nafis, “Sistem Peramalan Penjualan Paving Block Menggunakan Metode Single Moving Average,” JSiI, vol. 8, no. 2, pp. 75–81, Sep. 2021, doi: 10.30656/jsii.v8i2.3727.
[13] O. Chantarakasemchit, S. Nuchitprasitchai, and Y. Nilsiam, “Forex Rates Prediction on EUR/USD with Simple Moving Average Technique and Financial Factors,” in 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand: IEEE, Jun. 2020, pp. 771–774. doi: 10.1109/ECTI-CON49241.2020.9157907.
[14] W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 324, p. 012049, Mar. 2018, doi: 10.1088/1757-899X/324/1/012049.
[15] A. G. Putra, “Perancangan Sistem Informasi Optimasi Pengadaan Stok Menggunakan Single Moving Average Di Luxe_Id,” Universitas Pasundan, 2024.
[16] U. K. Acharjee, M. Arefin, K. M. Hossen, M. N. Uddin, Md. A. Uddin, and L. Islam, “Sequence-to-Sequence Learning-Based Conversion of Pseudo-Code to Source Code Using Neural Translation Approach,” IEEE Access, vol. 10, pp. 26730–26742, 2022, doi: 10.1109/ACCESS.2022.3155558.
[17] Z. E. Chan, E. Kurniawan, and M. D. Sena, “Forecasting Gamis Demand In Fashion Gallery Using Weighted Moving Average,” JURTEKSI, vol. 10, no. 2, pp. 323–330, Mar. 2024, doi: 10.33330/jurteksi.v10i2.3094.
[18] R. D. Snyder, A. B. Koehler, R. J. Hyndman, and J. K. Ord, “Exponential smoothing for inventory control: means and variances of lead-time demand,” p. 303453 Bytes, 2017, doi: 10.4225/03/5936249C6CC0D.
[19] G. K. Sharma and S. Patil, “Big Data Analysis for Revenue and Sales Prediction using Support Vector Regression with Auto-regressive Integrated Moving Average,” SMSJ, vol. 15, no. 01, pp. 1–8, Jan. 2023, doi: 10.18090/samriddhi.v15i01.01.
[20] M. M. Phyu and M. T. Khine, “Retail Demand Forecasting Using Sequence to Sequence Long Short-Term Memory Networks,” in 2023 IEEE Conference on Computer Applications (ICCA), Yangon, Myanmar: IEEE, Feb. 2023, pp. 208–213. doi: 10.1109/ICCA51723.2023.10181450.
Published
2024-12-23
How to Cite
SOMANTRI, Asep; MUTTAQIN, Miftahul Fadli.
Optimasi Manajemen Stok Barang Berbasis Prediksi pada Perusahaan Konfeksi dengan Algoritma Single Moving Average.
INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, [S.l.], v. 9, n. 2, p. 105 - 113, dec. 2024.
ISSN 2548-3412.
Available at: <https://ejournal-binainsani.ac.id/index.php/ITBI/article/view/3248>. Date accessed: 15 jan. 2025.
doi: https://doi.org/10.51211/itbi.v9i2.3248.